![]()
内容推荐 \t本书从Python基础入手,循序渐进地讲到机器学习、深度学习等领域的算法原理和代码实现,在学习算法理论的同时也强调了代码工程能力的逐步提高。
\t本书共6个章,第1章从零基础介绍Python基础语法、Python数据处理库NumPy、Pandas、Matplotlib、OpenCV的使用;第2章主要介绍机器学习算法的原理并配有代码实例,方便在理解原理的同时也能写出代码;第3章主要介绍深度学习框架TensorFlow、Keras、PyTorch的API和网络模型的搭建方法,力保读者能够掌握主流深度学习框架的使用;第4章主要介绍CNN卷积神经网络各种卷积的特性,并同时代码实战了多个经典分类网络;第5章介绍目标检测领域中多个经典算法的原理,并配套展现了代码调试的过程,将算法原理与代码进行了结合,方便更深入地理解算法原理;第6章分享深度学习项目的分析和实现过程。
\t本书精心设计的算法原理讲解、代码实现,不仅适合对深度学习感兴趣的初学者,同时对高校学生、教师、相关技术人员、研究人员及从事深度学习工程师都有参考价值。
目录 第1章Python编程基础 1.1环境搭建 1.2基础数据类型 1.2.1数值型 1.2.2字符串 1.2.3元组 1.2.4列表 1.2.5字典 1.2.6集合 1.2.7数据类型的转换 1.3条件语句 1.4循环语句 1.5函数 1.6类 1.7文件处理 1.8异常处理 1.9模块与包 1.10包的管理 …… |