网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 离散及组合数学(第5版)(英文影印版) |
分类 | 教育考试-大中专教材-大学教材 |
作者 | (美)格里马迪 |
出版社 | 科学出版社 |
下载 | ![]() |
简介 | 内容推荐 本书内容主要由四部分内容组成:(1)基本离散结构,包括集合论与逻辑,函数与关系,语言与有限状态自动机;(2)组合数学,包括排列组合,容斥原理,生成函数,递推关系,鸽巢原理;(3),图论及其应用,包括图论基本知识,树,很优化与匹配;(4)现代应用代数,包括环论与模算术,布尔代数与交换函数,群,编码理论,波利亚计数方法,有限域与组合设计。本书涵括离散数学基本理论,理论叙述严谨,有一定深度,适合计算机专业本科或软件工程硕士生教材,也适合电子类相关专业教材,和相关领域技术人员参考。 目录 PART 1 Fundamentals of Discrete Mathematics 1 1 Fundamental Principles of Counting 3 1.1 The Rules of Sum and Product 3 1.2 Permutations 6 1.3 Combinations: The Binomial Theorem 14 1.4 Combinations with Repetition 26 1.5 The Catalan Numbers (Optional) 36 1.6 Summary and Historical Review 41 2 Fundamentals of Logic 47 2.1 Basic Connectives and Truth Tables 47 2.2 Logical Equivalence: The Laws of Logic 55 2.3 Logical Implication: Rules of Inference 67 2.4 The Use of Quantifiers 86 2.5 Quantifiers, Definitions, and the Proofs of Theorems 103 2.6 Summary and Historical Review 117 3 Set Theory 123 3.1 Sets and Subsets 123 3.2 Set Operations and the Laws of Set Theory 136 3.3 Counting and Venn Diagrams 148 3.4 A FirstWord on Probability 150 3.5 The Axioms of Probability (Optional) 157 3.6 Conditional Probability: Independence (Optional) 166 3.7 Discrete Random Variables (Optional) 175 3.8 Summary and Historical Review 186 4Properties of the Integers: Mathematical Induction 193 4.1 TheWell-Ordering Principle: Mathematical Induction 193 4.2 Recursive Definitions 210 4.3 The Division Algorithm: Prime Numbers 221 4.4 The Greatest Common Divisor: The Euclidean Algorithm 231 4.5 The Fundamental Theorem of Arithmetic 237 4.6 Summary and Historical Review 242 5 Relations and Functions 247 5.1 Cartesian Products and Relations 248 5.2 Functions: Plain and One-to-One 252 5.3 Onto Functions: Stirling Numbers of the Second Kind 260 5.4 Spe Functions 267 5.5 The Pigeonhole Principle 273 5.6 Function Composition and Inverse Functions 278 5.7 Computational Complexity 289 5.8 Analysis of Algorithms 294 5.9 Summary and Historical Review 302 6 Languages: Finite State Machines 309 6.1 Language: The Set Theory of Strings 309 6.2 Finite State Machines: A First Encounter 319 6.3 Finite State Machines: A Second Encounter 326 6.4 Summary and Historical Review 332 7 Relations: The Second Time Around 337 7.1 Relations Revisited: Properties of Relations 337 7.2 Computer Recognition: Zero-One Matrices and Directed Graphs 344 7.3 Partial Orders: Hasse Diagrams 356 7.4 Equivalence Relations and Partitions 366 7.5 Finite State Machines: The Minimization Process 371 7.6 Summary and Historical Review 376 PART 2 Further Topics in Enumeration 383 8 The Principle of Inclusion and Exclusion 385 8.1 The Principle of Inclusion and Exclusion 385 8.2 Generalizations of the Principle 397 8.3 Derangements: Nothing Is in Its Right Place 402 8.4 Rook Polynomials 404 8.5 Arrangements with Forbidden Positions 406 8.6 Summary and Historical Review 411 9 Generating Functions 415 9.1 Introductory Examples 415 9.2 Definition and Examples: Calculational Techniques 418 9.3 Partitions of Integers 432 9.4 The Exponential Generating Function 436 9.5 The Summation Operator 440 9.6 Summary and Historical Review 442 10 Recurrence Relations 447 10.1 The First-Order Linear Recurrence Relation 447 10.2 The Second-Order Linear Homogeneous Recurrence Relation with Constant Coefficients 456 10.3 The Nonhomogeneous Recurrence Relation 470 10.4 The Method of Generating Functions 482 10.5 A Spe Kind of Nonlinear Recurrence Relation (Optional) 487 10.6 Divide-and-Conquer Algorithms (Optional) 496 10.6 Summary and Historical Review 505 PART 3 Graph Theory and Applications 511 11 An Introduction to Graph Theory 513 11.1 Definitions and Examples 513 11.2 Subgraphs, Complements, and Graph Isomorphism 520 11.3 Vertex Degree: Euler Trails and Circuits 530 11.4 Planar Graphs 540 11.5 Hamilton Paths and Cycles 556 11.6 Graph Coloring and Chromatic Polynomials 564 11.7 Summary and Historical Review 573 12 Trees 581 12.1 Definitions, Properties, and Examples 581 12.2 Rooted Trees 587 12.3 Trees and Sorting 605 12.4 Weighted Trees and Prefix Codes 609 12.5 Biconnected Components and Articulation Points 615 12.6 Summary and Historical Review 622 13 Optimization and Matching 631 13.1 Dijkstra’s Shortest-Path Algorithm 631 13.2 Minimal Spanning Trees: The Algorithms of Kruskal and Prim 638 13.3 Transport Networks: The Max-Flow Min-Cut Theorem 644 13.4 Matching Theory 659 13.5 Summary and Historical Review 667 PART 4 Modern Applied Algebra 671 14 Rings and Modular Arithmetic 673 14.1 The Ring Structure: Definition and Examples 673 14.2 Ring Properties and Substructures 679 14.3 The Integers Modulo n 686 14.4 Ring Homomorphisms and Isomorphisms 697 14.5 Summary and Historical Review 705 15 Boolean Algebra and Switching Functions 711 15.1 Switching Functions: Disjunctive and Conjunctive Normal Forms 711 15.2 Gating Networks: Minimal Sums of Products: Karnaugh Maps 719 15.3 Further Applications: Don’t-Care Conditions 729 …… |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。