网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 数学所讲座 2017 |
分类 | 科学技术-自然科学-自然科普 |
作者 | 付保华 等 |
出版社 | 科学出版社 |
下载 | |
简介 | 内容推荐 中国科学院数学研究所一批中青年学者发起组织了数学所讲座,介绍现代数学的重要内容及其思想、方法,旨在开阔视野,增进交流,提高数学修养。本书的文章系根据2017年数学所讲座的8个报告的讲稿整理而成,按报告的时间顺序编排。具体的内容包括:模空间的故事:形变和刚性、广义相对论中的拟局部质量和等周曲面、法诺簇的代数K-稳定性理论、接近非线性偏微分方程及相关的几何问题、Langlands纲领的近期进展、几何与表示掠影、量子克隆、量子可积系统新进展——非对角BetheAnsatz方法。本书可供数学专业的高年级本科生、研究生、教师和科研人员阅读参考,也可作为数学爱好者提高数学修养的学习读物。 目录 前言 1模空间的故事:形变和刚性季理真 1.1简介1 1.2主要的刚性和形变定理4 1.2.1关于刚性的一些结果4 1.2.2关于形变的一些结果6 1.2.3我们为什么会研究刚性?7 1.2.4我们为什么会研究形变和模空间?8 1.2.5刚性和形变之间的联系9 1.2.6这些是怎么开始的?共同的根源是什么?10 1.3黎曼曲面的定义和相关历史10 1.3.1黎曼最初对模空间的定义11 1.3.2抽象的黎曼曲面的形式定义16 1.4紧黎曼曲面的模空间以及黎曼的数值方法17 1.4.1黎曼给出的初始定义18 1.4.2黎曼对模的计数18 1.4.3黎曼为什么要用模这个名词?20 1.5黎曼模问题22 1.5.1黎曼对维数的计算22 1.5.2数值模24 1.6模空间在单值化定理中的第一个应用25 1.6.1什么是单值化?25 1.6.2克莱因和庞加莱对代数曲线的单值化26 1.6.3赫尔维茨空间和塞维里簇27 1.6.4布劳威尔和科比的工作:完善连续性方法28 1.6.5弗里克空间32 1.7托勒利定理、西格尔上半空间和数值模34 1.7.1黎曼曲面的周期34 1.7.2西格尔上半空间和托勒利定理36 1.7.3数值模38 1.8泰希米勒关于模空间的工作:标记的黎曼曲面、泰希米勒空间、细模空间38 1.8.1泰希米勒问了哪些问题?39 1.8.2泰希米勒做了什么?41 1.8.3泰希米勒为什么要研究模空间?47 1.9泰希米勒理论52 1.9.1韦伊在泰希米勒空间上的工作与猜想52 1.9.2阿尔福斯和贝尔斯在泰希米勒空间上的工作53 1.9.3格罗滕迪克在泰希米勒空间上的工作55 1.10泰希米勒上的合适的复结构58 1.10.1阿尔福斯、劳赫和贝尔斯定义的Tg上的复结构58 1.10.2为什么阿尔福斯-贝尔斯-劳赫的复结构合理?62 1.10.3为何周期映射是全纯的很重要?65 1.10.4模空间上的性质和评论66 1.10.5细的和粗的模空间的定义67 1.10.6阿尔福斯和贝尔斯的复结构是合适的68 1.11代数曲线的模空间69 1.11.1Mg作为一个代数簇69 1.11.2几何不变量理论和Mg进一步性质71 1.12紧复流形的形变73 1.12.1小平邦彦-斯潘塞的形变理论73 1.12.2霍奇结构簇78 1.13塞尔贝格在格上的工作与猜想79 1.13.1塞尔贝格的工作和局部刚性80 1.13.2塞尔贝格在算术性的猜想82 1.14莫斯托关于局部对称空间的强刚性83 1.14.1强刚性和它的历史83 1.14.2莫斯托强刚性的证明85 1.15复流形的刚性86 1.15.1刚性的概念86 1.15.2复射影空间的强刚性86 1.15.3埃尔米特局部对称空间的刚性86 1.15.4刚性和算术性87 1.15.5局部对称埃尔米特空间的局部刚性和定义的域88 1.16马尔古利斯超刚性和格的算术性88 1.16.1超刚性89 1.16.2超刚性的推论90 1.17永不结束的故事91 参考文献97 2广义相对论中的拟局部质量和等周曲面史宇光 2.1等周问题的历史及若干影响107 2.2各种曲率假设下的等周面积比较定理108 参考文献116 3法诺簇的代数K-稳定性理论许晨阳 3.1历史简介119 3.2法诺簇的K-稳定性理论120 3.3法诺簇的K-模空间122 3.4显式例子124 3.4.1|KX|Q的奇点不变量124 3.4.2模空间方法125 3.4.3未知情形126 参考文献126 4接近非线性偏微分方程及相关的几何问题关波 4.1引言130 4.2偏微分方程在几何、分析中应用的例子130 4.2.1等周不等式131 4.2.2Alexandrov极大值原理133 4.2.3Sobolev不等式和Monge-Ampère方程134 4.2.4常平均曲率闭曲面和Alexandrov定理136 4.3几何问题中Monge-Ampère方程及其推广139 4.3.1Minkowski问题140 4.3.2Alexandrov-Chern Minkowski问题141 4.3.3Weyl等距嵌入问题143 4.3.4Calabi猜想和复Monge-Ampère方程145 4.3.5Mabuchi度量和Donaldson猜想146 4.4黎曼流形上的一类接近非线性椭圆偏微分方程148 4.4.1Dirichlet问题149 4.4.2闭流形上的接近非线性方程151 参考文献151 5Langlands纲领的近期进展李文威 5.1引言153 5.2自守形式153 5.2.1起源:上半平面153 5.2.2复环面的模空间154 5.2.3一般理论156 5.3表示理论的观点157 5.3.1过渡157 5.3.2谱分解158 5.3.3间奏:赋值和adèle环159 5.3.4回到谱分解160 5.3.5光滑表示161 5.4Langlands纲领162 5.4.1Langlands对偶群162 5.4.2非分歧表示162 5.4.3L-函数163 5.4.4Langlands函子性164 5.4.5Langlands对应165 5.4.6几何、算术与分析166 5.5函数域情形:Weil的见解167 5.5.1Dedekind-Kronecker-Weil的洞见167 5.5.2挠子的模空间168 5.5.3数域上的一种类比169 5.5.4函数域上实现整体Langlands对应的思路170 5.6Lafforgue工作的概述171 5.6.1Hecke叠和shtuka171 5.6.2上同调172 5.6.3巡游算子或S-算子173 5.7几何Langlands纲领174 5.7.1几何化的线索174 5.7.2范畴化175 5.8量子Langlands纲领概述175 参考文献176 6几何与表示掠影付保华 6.1引子:正多面体177 6.2SL(2,C)中有限子群的表示178 6.3克莱因奇点及其极小解消181 6.4McKay对应及其发展182 6.5幂零轨道184 6.6Springer解消185 6.7Springer对应188 6.8McKay遇见Springer?191 参考文献192 7量子克隆骆顺龙 7.1两朵乌云194 7.2机械观之兴衰196 7.3量子克隆之前世199 7.4量子克隆之今生207 7.5量子信息212 7.6若干课题214 参考文献220 8量子可积系统新进展——非对角Bethe Ansatz方法杨文力 8.1量子可积模型介绍228 8.2非对角Bethe Ansatz方法230 8.3拓扑自旋环232 8.3.1构造Bethe态236 8.4非平行边界的自旋链238 8.4.1非平行边界的XXX自旋链238 8.4.2非平行边界的XXZ自旋链243 8.4.3XXZ自旋链的热力学极限和表面能246 8.5总结和展望248 参考文献248 |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。