近年来,深度强化学习成为关注的热点。在自动驾驶、棋牌游戏、分子重排和机器人等领域,计算机程序能够通过强化学习,理解以前被视为超级困难的问题,取得了令人瞩目的成果。在围棋比赛中,AlphaGo接连战胜樊麾、李世石和柯洁等人类冠军。深度强化学习从生物学和心理学领域的研究中受到启发。生物学激发了人工神经网络和深度学习的出现,而心理学研究人和动物如何学习,如何通过正负刺激来强化目标行为。了解了强化学习如何指导机器人行走时,我们不禁联想到儿童如何在玩中学习。动物行为和大脑结构可作为新的科学和工程蓝图。计算机似乎真正具备了人类的某些行为特征,深度强化学习技术成为实现AI梦想的核心。
教育界也十分重视深度强化学习的研究进展。许多大学开设了深度强化学习课程。本书恰到好处地介绍了深度强化学习领域的技术细节,可作为AI研究生课程的教材。本书讲解全面,涵盖深度Q-learning的基本算法,乃至多智能体强化学习和元学习等高级主题。