![]()
内容推荐 客观世界中发生的现象可以分为两类:一类是在一定条件下结果是确定的,例如向上抛出的一枚硬币一定下落,水加热到沸点一定沸腾;而另一类是在一定条件下结果是不确定的,例如丢一枚硬币,可能正面朝上,也可能反面朝上.我们把第一类现象称为确定性现象,第二类现象称为随机性现象。 随机性现象在个别试验中其结果呈现偶然性,而在大量重复试验中其结果具有统计规律性,“概率论”是研究随机性现象统计规律性的学科,是随机性数学的基础课.由于随机问题的特殊性,在概率论中分析问题、解决问题的思想和方法有别于其他数学课,关键是理解各种概率思想。 “数理统计”讨论概率论的思想和方法在实际问题中的应用,数理统计的内容非常丰富,随着科学技术的发展,还在不断地充实和提高,本书仅介绍基本也是重要的几个方面。 概率统计方法在自然科学、社会科学等几乎所有的领域都有广泛的应用,通过该课程的学习,掌握分析、解决随机问题的基本思想和基本方法,掌握几种具体的数理统计方法,也为学习后继课程打好基础。 学习概率论与数理统计需要具备一定的数学基础知识,包括集合论、排列组合、函数的导数、定积分、变上限积分的导数、偏导数和二重积分等。 目录 课程简介 第1章概率论的基本概念 1.1随机试验及随机事件 1.2随机事件的运算 1.3概率的定义和性质 1.4等可能概率问题 1.5条件概率与乘法公式 1.6全概率公式 1.7贝叶斯公式 1.8随机事件的独立性 小结 第2章随机变量及其分布 2.1随机变量的概念与离散型随机变量 2.20-1分布和泊松分布 2.3贝努里分布 2.4随机变量的分布函数 2.5连续型随机变量 2.6均匀分布和指数分布 2.7正态分布 2.8随机变量函数的分布 小结 第3章多维随机变量 3.1二维离散型随机变量 3.2二维连续型随机变量 3.3边缘密度函数 3.4随机变量的独立性 3.5多个随机变量的函数的分布 3.6几种特殊随机变量的函数的分布 小结 第4章随机变量的数字特征 4.1数学期望 4.2数学期望的性质 4.3方差 4.4常见的几种随机变量的期望与方差 4.5协方差与相关系数 4.6独立性与不相关性、矩 小结 第5章极限定理 5.1大数定理 5.2中心极限定理 小结 第6章数理统计基础 6.1数理统计中的几个概念 6.2数理统计中常用的三个分布 6.3一个正态总体下的三个统计量的分布 6.4两个正态总体下的三个统计量的分布 小结 第7章参数估计 7.1矩估计法和顺序统计量法 7.2极大似然估计 7.3估计量的评价标准 7.4参数的区间估计 7.5两个正态总体的参数的区间估计 7.6区间估计的两种特殊情形 小结 第8章假设检验 8.1假设检验的基本概念 8.2假设检验的说明 8.3一个正态总体下参数的假设检验 8.4两个正态总体下参数的假设检验 8.5假设检验的三种特殊情形 小结 第9章方差分析和回归分析初步 9.1基本概念 9.2单因素试验的方差分析 9.3双因素无重复试验的方差分析 9.4双因素等重复试验的方差分析 9.5一元回归分析 小结 附录概率论与数理统计附表 习题答案 |