网站首页 软件下载 游戏下载 翻译软件 电子书下载 电影下载 电视剧下载 教程攻略
书名 | 概率论(英文版)(精)/美国数学会经典影印系列 |
分类 | 科学技术-自然科学-数学 |
作者 | (美)丹尼尔·W.斯特罗克 |
出版社 | 高等教育出版社 |
下载 | ![]() |
简介 | 内容推荐 本书介绍了现代概率论的基础知识,从有限和可数样本空间的概率论开始,逐步过渡到简单讲授测度论,随后介绍了概率论的一些初步应用,包括独立性和条件期望。书的后半部分涉及高斯随机变量、马尔可夫链、一些连续参数过程(包括布朗运动)以及最后的离散和连续参数的鞅。本书是关于概率论及其所需测度论的一本自封的入门书籍。 目录 Preface Chapter 1. Some Background and Preliminaries 1.1. The Language of Probability Theory 1.1.1. Sample Spaces and Events 1.1.2. Probability Measures Exercises for 1.1 1.2. Finite and Countable Sample Spaces 1.2.1. Probability Theory on a Countable Space 1.2.2. Uniform Probabilities and Coin Tossing 1.2.3. Tournaments 1.2.4. Symmetric Random Walk 1.2.5. De Moivre's Central Limit Theorem 1.2.6. Independent Events 1.2.7. The Arc Sine Law 1.2.8. Conditional Probability Exercises for 1.2 1.3. Some Non-Uniform Probability Measures 1.3.1. Random Variables and Their Distributions 1.3.2. Biased Coins 1.3.3. Recurrence and Transience of Random Walks Exercises for 1.3 1.4. Expectation Values 1.4.1. Some Elementary Examples 1.4.2. Independence and Moment Generating Functions 1.4.3. Basic Convergence Results Exercises for 1.4 Comments on Chapter 1 Chapter 2. Probability Theory on Uncountable Sample Spaces 2.1. A Little Measure Theory 2.1.1. Sigma Algebras, Measurable Functions, and Measures 2.1.2. Ⅱ-and A-Systems Exercises for 2.1 2.2. A Construction of Pp on {0,1}z+ 2.2.1. The Metric Space {0,1}z+ 2.2.2. The Construction Exercises for 2.2 2.3. Other Probability Measures 2.3.1. The Uniform Probability Measure on [0,1] 2.3.2. Lebesgue Measure on R 2.3.3. Distribution Functions and Probability Measures Exercises for 2.3 2.4. Lebesgue Integration 2.4.1. Integration of Functions 2.4.2. Some Properties of the Lebesgue Integral 2.4.3. Basic Convergence Theorems 2.4.4. Inequalities 2.4.5. Fubini's Theorem Exercises for 2.4 2.5. Lebesgue Measure on RN 2.5.1. Polar Coordinates 2.5.2. Gaussian Computations and Stirling's Formula Exercises for 2.5 Comments on Chapter 2 Chapter 3. Some Applications to Probability Theory 3.1. Independence and Conditioning 3.1.1. Independent σ-Algebras 3.1.2. Independent Random Variables 3.1.3. Conditioning 3.1.4. Some Properties of Conditional Expectations Exercises for 3.1 3.2. Distributions that Admit a Density 3.2.1. Densities 3.2.2. Densities and Conditioning Exercises for 3.2 3.3. Summing Independent Random Variables 3.3.1. Convolution of Distributions 3.3.2. Some Important Examples 3.3.3. Kolmogorov's Inequality and the Strong Law Exercises for 3.3 Comments on Chapter 3 Chapter 4. The Central Limit Theorem and Gaussian Distributions 4.1. The Central Limit Theorem 4.1.1. Lindeberg's Theorem Exercises for 4.1 4.2. Families of Normal Random Variables 4.2.1. Multidimensional Gaussian Distributions 4.2.2. Standard Normal Random Variables 4.2.3. More General Normal Random Variables 4.2.4. A Concentration Property of Gaussian Distributions 4.2.5. Linear Transformations of Normal Random Variables 4.2.6. Gaussian Families Exercises for 4.2 Comments on Chapter 4 Chapter 5. Discrete Parameter Stochastic Processes 5.1. Random Walks Revisited 5.1.1. Immediate Rewards 5.1.2. Computations via Conditioning Exercises for 5.1 5.2. Processes with the Markov Property 5.2.1. Sequences of Dependent Random Variables 5.2.2. Markov Chains 5.2.3. Long-Time Behavior 5.2.4. An Extension Exercises for 5.2 5.3. Markov Chains on a Countable State Space 5.3.1. The Markov Property 5.3.2. Return Times and the Renewal Equation 5.3.3. A Little Ergodic Theory Exercises for 5.3 Comments on Chapter 5 Chapter 6. Some Continuous-Time Processes 6.1. Transition Probability Functions and Markov Processes 6.1.1. Transition Probability Functions Exercises for 6.1 6.2. Markov Chains Run with a Poisson Clock 6.2.1. The Simple |
随便看 |
|
霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。