简介 |
![]()
内容推荐 这是一本生动的关于数学纽结的说明书,将吸引各式各样的读者,从寻求传统学习以外经验的本科生,到想要悠闲介绍这个主题的数学家。刚开始深入学习的研究生将会发现这是一份有价值的概述,读者只需要线性代数的训练,就可以理解书中提到的数学内容。当从线性代数和基本的群论中引入工具研究纽结的性质时,拓扑和代数之间的相互作用,即代数拓扑,在书中早早出现。 Livingston带领读者通过这个课题的概览,展示如何使用线性代数的技巧来解决一些复杂问题,包括数学中最美丽的主题之一:对称。本书最后讨论了高维纽结理论,以及该学科的一些最新进展,包括Conway、Jones和Kauffman的多项式。补充部分介绍了基本群,它是代数拓扑的核心。 目录 ACKNOWLEDGEMENTS PREFACE Chapter 1 A CENTURY OF KNOT THEORY Chapter 2 WHAT Is A KNoT? Section 1 Wild Knots and Unknottings Section 2 The Definition of a Knot Section 3 Equivalence of Knots, Deformations Section 4 Diagrams and Projections Section 5 Orientations Chapter 3 COMBINATORIAL TECHNIQUES Section 1 Reidemeister Moves Section 2 Colorings Section 3 A Generalization of Colorability, mod p Labelings Section 4 Matrices, Labelings, and Determinants Section 5 The Alexander Polynomial Chapter 4 GEOMETRIC TECHNIQUES Section 1 Surfaces and Homeomorphisms Section 2 The Classification of Surfaces Section 3 Seifert Surfaces and the Genus of a Knot Section 4 Surgery on Surfaces Section 5 Connected Sums of Knots and Prime Decompositions Chapter 5 ALGEBRAIC TECHNIQUES Section 1 Symmetric Groups Section 2 Knots and Groups Section 3 Conjugation and the Labeling Theorem Section 4 Equations in Groups and the Group of a Knot Section 5 The Fundamental Group Chapter 6 GEOMETRY, ALGEBRA, AND THE ALEXANDER POLYNOMIAL Section 1 The Seifert Matrix Section 2 Seifert Matrices and the Alexander Polynomial Section 3 The Signature of a Knot, and other S-Equivalence Invariants Section 4 Knot Groups and the Alexander Polynomial Chapter 7 NUMERICAL INVARIANTS Section 1 Summary of Numerical Invariants Section 2 New Invariants Section 3 Braids and Bridges Section 4 Relations Between the Numerical Invariants Section 5 Independence of Numerical Invariants Chapter 8 SYMMETRIES OF KNOTS Section 1 Amphicheiral and Reversible Knots Section 2 Periodic Knots Section 3 The Murasugi Conditions Section 4 Periodic Seifert Surfaces and Edmonds' Theorem Section 5 Applications of the Murasugi and Edmonds Conditions Chapter 9 HIGH-DIMENSIONAL KNOT THEORY Section 1 Defining High-dimensional Knots Section 2 Three Dimensions from a 2-dimensional Perspective Section 3 Three-dimensional Cross-sections of a 4-dimensional Knot Section 4 Slice Knots Section 5 The Knot Concordance Group Chapter 10 NEw COMBINATORIAL TECHNIQUES Section 1 The Conway Polynomial of a Knot Section 2 New Polynomial Invariants Section 3 Kauffman's Bracket Polynomial Appendix 1 KNOT TABLE Appendix 2 ALEXANDER POLYNOMIALS REFERENCES INDEX |