简介 |
![]()
内容推荐 映射类群和Riemann曲面的模空间是2011年IAS/PCMI研究生暑期学校的主题。本书介绍了暑期学校的九个不同的讲座系列,涵盖了当前关注的一些主题。入门课程涵盖了映射类群和Teichmuller理论。高级课程涵盖了模空间的相交理论、多边形台球和模空间的动力学、映射类群的稳定上同调、Torelli群的结构和算术映射类群。 这些课程由该领域的领袖级专家提供的一系列密集的短讲座组成,旨在向学生介绍数学领域中令人兴奋的最新研究。这些讲座不重复其他地方提供的标准课程。本书为对Riemann曲面的模空间的拓扑、几何和动力学以及相关主题感兴趣的研究生和研究人员提供了一份有价值的资源。 目录 Preface Benson Farb, Richard Hain, and Eduard Looijenga Introduction Yair N.Minsky A Brief Introduction to Mapping Class Groups 1. Definitions, examples, basic structure 2. Hyperbolic geometry, laminations and foliations 3. The Nielsen-Thurston classification theorem 4. Classification continued, and consequences 5. Further reading and current events Bibliography Ursula Hamenstadt Teichmuller Theory Introduction Lecture 1. Hyperbolic surfaces Lecture 2. Quasiconformal maps Lecture 3. Complex structures, Jacobians and the Weil Petersson form Lecture 4. The curve graph and the augmented Teichmüller space Lecture 5. Geometry and dynamics of moduli space Bibliography Nathalie Wahl The Mumford Conjecture, Madsen-Weiss and Homological Stability for Mapping Class Groups of Surfaces Introduction Lecture 1. The Mumford conjecture and the Madsen-Weiss theorem 1. The Mumford conjecture 2. Moduli space, mapping class groups and diffeomorphism groups 3. The Mumford-Morita-Miller classes 4. Homological stability 5. The Madsen-Weiss theorem 6. Exercises Lecture 2. Homological stability: geometric ingredients 1. General strategy of proof 2. The case of the mapping class group of surfaces 3. The ordered arc complex 4. Curve complexes and disc spaces 5. Exercises Lecture 3. Homological stability: the spectral sequence argument 1. Double complexes associated to actions on simplicial complexes 2. The spectral sequence associated to the horizontal filtration 3. The spectral sequence associated to the vertical filtration 4. The proof of stability for surfaces with boundaries 5. Closing the boundaries 6. Exercises Lecture 4. Homological stability: the connectivity argument 1. Strategy for computing the connectivity of the ordered arc complex 2. Contractibility of the full arc complex 3. Deducing connectivity of smaller complexes 4. Exercises Bibliography Soren Galatius Lectures on the Madsen–Weiss Theorem Lecture 1. Spaces of submanifolds and the Madsen-Weiss Theorem 1.1. Spaces of manifolds 1.2. Exercises for Lecture 1 Lecture 2. Rational cohomology and outline of proof 2.1. Cohomology of Ω∞ψ 2.2. Outline of proof 2.3. Exercises for Lecture 2 Lecture 3. Topological monoids and the first part of the proof 3.1. Topological monoids 3.2. Exercises for Lecture 3 Lecture 4. Final step of the proof 4.1. Proof of theorem 4.3 4.2. Exercises for Lecture 4 Bibliography Andrew Putman The Torelli Group and Congruence Subgroups of the Mapping Class Group Introduction Lecture 1. The Torelli group Lecture 2. The Johnson homomorphism Lecture 3.The abelianization of Modg, n(p) Lecture 4. The second rational homology group of Modg(p) Bibliography Carel Faber Tautological Algebras of Moduli Spaces of Curves Introduction Lecture 1. The tautological ring of Mg Exercises Lecture 2. The tautological rings of Mg, n and of some natural partial compactifications of Mg, n Exercises Bibliography Scott A. Wolpert Mirzakhani's Volume Recursion and Approach for the Witten-Kontsevich Theorem on Moduli Tautological Intersection Numbers Prelude Lecture 1. The background and overview Lecture 2. The McShane-Mirzakhani identity Lecture 3. The covolume formula and recursion Lecture 4. Symplectic reduction, principal S1 bundles and the normal form Lecture 5. The pattern of intersection numbers and Witten-Kontsevich Questions for the problem sessions Bibliography Martin Moller Teichmuller Curves, Mainly from the Viewpoint of Algebraic Geometry 1. Introduction 2. Flat surfaces and SL2(R)-action 2.1. Flat surfaces and translation structures 2.2. Affine groups and the trace field 2.3. Strata of 2M, and hypere |