网站首页  软件下载  游戏下载  翻译软件  电子书下载  电影下载  电视剧下载  教程攻略

请输入您要查询的图书:

 

书名 互联网大厂推荐算法实战
分类 科学技术-自然科学-数学
作者 赵传霖
出版社 人民邮电出版社
下载
简介
内容推荐
本书介绍了互联网大厂当前采用的一些前沿推荐算法,并梳理了这些算法背后的思想脉络与技术框架。
本书总计10章,内容涵盖了推荐系统的基础知识、推荐系统中的特征工程、推荐系统中的Embedding、推荐系统的各组成模块(包括召回、粗排、精排与重排)所使用的算法技术、推荐算法实践中经常会遇到的难题以及应对之道(其中涉及多任务推荐、多场景推荐、新用户冷启动、新物料冷启动、评估模型效果、定位并解决问题等),最后还用一章的篇幅介绍了推荐算法工程师在工作、学习、面试时应该采取的做法。
本书既适合推荐系统、计算广告、个性化搜索领域的从业人员阅读,也适合希望从事互联网算法工作的在校学生阅读。
作者简介
赵传霖,博士,毕业于清华大学电气工程专业,知乎“机器学习”话题优秀答主,目前在北京快手科技有限公司担任算法专家,拥有10余年的互联网算法从业经验,主要研究方向为推荐系统、计算广告、个性化搜索。分别以知乎的“石塔西”账号和微信的“石塔西的说书馆”公众号发表了多篇以推荐算法为主题的原创性文章,深受广大读者的好评,并曾经4次获得知乎创作排行榜“知势榜?影响力榜”(科技互联网领域)第1名。
目录
第1章 推荐系统简介
1.1 推荐系统的意义
1.2 推荐系统是如何运行的
1.3 推荐系统架构
1.3.1 功能架构
1.3.2 数据架构
1.4 推广搜的区别与联系
1.4.1 三驾马车的相同点
1.4.2 推荐与搜索
1.4.3 推搜与广告
1.5 小结
第2章 推荐系统中的特征工程
2.1 批判“特征工程过时”的错误论调
2.2 特征提取
2.2.1 物料画像
2.2.2 用户画像
2.2.3 交叉特征
2.2.4 偏差特征
2.3 数值特征的处理
2.3.1 处理缺失值
2.3.2 标准化
2.3.3 数据平滑与消偏
2.3.4 分桶离散化
2.4 类别特征的处理
2.4.1 类别特征更受欢迎
2.4.2 类别特征享受VIP服务
2.4.3 映射
2.4.4 特征哈希
2.5 小结
第3章 推荐系统中的Embedding
3.1 无中生有:推荐算法中的Embedding
3.1.1 传统推荐算法:博闻强识
3.1.2 推荐算法的刚需:扩展性
3.1.3 深度学习的核心思想:无中生有的Embedding
3.1.4 Embedding的实现细节
3.2 共享Embedding还是独占Embedding
3.2.1 共享Embedding
3.2.2 独占Embedding
3.3 Parameter Server:推荐算法的训练加速器
3.3.1 传统分布式计算的不足
3.3.2 基于PS的分布式训练范式
3.3.3 PS中的并行策略
3.3.4 基于ps-lite实现分布式算法
3.3.5 更先进的PS
3.4 小结
第4章 精排
4.1 推荐算法的5个维度
4.2 交叉结构
4.2.1 FTRL:传统时代的记忆大师
4.2.2 FM:半只脚迈入DNN的门槛
4.2.3 Wide & Deep:兼顾记忆与扩展
4.2.4 DeepFM:融合二阶交叉
4.2.5 DCN:不再执着于DNN
4.2.6 AutoInt:变形金刚做交叉
4.3 用户行为序列建模
4.3.1 行为序列信息的构成
4.3.2 简单Pooling
4.3.3 用户建模要“千物千面”
4.3.4 建模序列内的依赖关系
4.3.5 多多益善:建模长序列
4.4 小结
第5章 召回
5.1 传统召回算法
5.1.1 基于物料属性的倒排索引
5.1.2 基于统计的协同过滤算法
5.1.3 矩阵分解算法
5.1.4 如何合并多路召回
5.2 向量化召回统一建模框架
5.2.1 如何定义正样本
5.2.2 重点关注负样本
5.2.3 解耦生成Embedding
5.2.4 如何定义优化目标
5.3 借助Word2Vec
5.3.1 最简单的Item2Vec
5.3.2 Airbnb召回算法
5.3.3 阿里巴巴的EGES召回
5.4 “瑞士军刀”FM的召回功能
5.4.1 打压热门物料
5.4.2 增广Embedding
5.5 大厂主力:双塔模型
5.5.1 不同场景下的正样本
5.5.2 简化负采样
5.5.3 双塔结构特点
5.5.4 Sampled Softmax Loss的技巧
5.5.5 双塔模型实现举例
5.6 邻里互助:GCN召回
5.6.1 GCN基础
5.6.2 PinSage:大规模图卷积的经典案例
5.6.3 异构图上的GCN
5.7 小结
第6章 粗排与重排
6.1 粗排
6.1.1 模型:双塔仍然是主力
6.1.2 目标:拜精排为师
6.1.3 数据:纠正曝光偏差
6.1.4 模型:轻量级全连接
6.2 重排
6.2.1 基于启发式规则
6.2.2 基于行列式点过程
6.2.3 基于上下文感知的排序学习
6.3 小结
第7章 多任务与多场景
7.1 多任务推荐
7.1.1 多任务建模的误区
7.1.2 并发建模
7.1.3 串行建模
7.1.4 多个损失的融合
7.1.5 多个打分的融合
7.2 多场景推荐
7.2.1 特征位置
7.2.2 模型结构
7.2.3 模型参数
7.3 小结
第8章 冷启动
8.1 Bandit算法
8.1.1 多臂老虎机问题
8.1.2 Epsilon Greedy
8.1.3 UCB
8.1.4 概率匹配
8.1.5 Bayesian Bandit
8.1.6 上下文Bandit
8.2 元学习
8.2.1 什么是元学习
8.2.2 什么是MAML
8.2.3 MAML针对推荐场景的改造
8.2.4 Meta-Embedding
8.3 对比学习
8.3.1 对比学习简介
8.3.2 对比学习在推荐系统中的作用与使用方式
8.3.3 辨析对比学习与向量化召回
8.3.4 纠偏长尾物料的实践
8.3.5 纠偏小众用户的实践
8.4 其他算法
8.4.1 迁移学习
8.4.2 预测物料消费指标
8.4.3 以群体代替个体
8.4.4 借鉴多场景推荐
8.5 小结
第9章 评估与调试
9.1 离线评估
9.1.1 评估排序算法
9.1.2 评估召回算法
9.1.3 人工评测
9.1.4 持续评估
9.2 在线评估:A/B实验
9.2.1 线上:流量划分
9.2.2 线下:统计分析
9.3 打开模型的黑盒
9.3.1 外部观察
9.3.2 内部剖析
9.4 线下涨了,线上没效果
9.4.1 特征穿越
9.4.2 老汤模型
9.4.3 冰山:系统的内在缺
随便看

 

霍普软件下载网电子书栏目提供海量电子书在线免费阅读及下载。

 

Copyright © 2002-2024 101bt.net All Rights Reserved
更新时间:2025/3/30 18:08:23