![]()
内容推荐 这是一本金融数据挖掘与分析领域的实战性著作,它能指导零Python编程基础和零数据挖掘与分析基础的读者快速掌握金融数据挖掘与分析的工具、技术和方法。 读完本书,你将会有如下3个方面的收获: (1)Python编程基础和数据预处理 首先详细讲解了Python的核心语法,以及NumPy、Matplotlib、PySpark、Jupyter Notebook等Python数据处理工具的使用;然后详细介绍了数据预处理的流程和技巧。通过深入浅出的语言和丰富的样例展示,帮助初学者快速上手Python,为之后的数据分析实战夯实基础。 (2)数据挖掘与分析的经典方法 详细讲解了经典的数据挖掘方法,包括聚类分析、回归分析、分类分析、异常检测、关联分析、时间序列分析等。 (3)主要金融应用场景的数据挖掘方法 针对网络舆情的采集和热点分析、舆情分析中的情感分析、股价趋势预测、个人信用评分、企业信用评分、用户画像、目标客户精准分析、销售数据分析等金融行业的常见应用场景,给出了数据挖掘和分析的方法。 本书注重实战,配有大量精心设计的案例,同时还有配套的视频讲解、代码和数据资源,可操作性强。 作者简介 刘鹏,教授,清华大学博士,云计算、大数据和人工智能领域的知名专家,南京云创大数据科技股份有限公司总裁、中国大数据应用联盟人工智能专家委员会主任。 中国电子学会云计算专家委员会云存储组组长、工业和信息化部云计算研究中心专家。中国信息协会教育分会人工智能教育专家委员会主任、教育部全国普通高校毕业生就业创业指导委员会委员、“2019年全国大学生数学建模比赛”命题人、“第45届世界技能大赛”中国区云计算选拔赛裁判长/专家指导组组长、2002 PennySort国际计算机排序比赛冠军与2003年全国挑战杯总冠军。提出的反垃圾邮件网格,被IEEE Cluster 2003评为杰出网格项目,为解决困扰全球的垃圾邮件问题做出根本贡献,该技术成为云安全技术的基础。 目录 前言 第1章 Python工作环境准备 1.1 Anaconda环境安装 1.2 常用Python交互工具 1.3 Jupyter Notebook简介 1.4 习题 第2章 Python入门 2.1 Python基础知识 2.2 Python基础语法 2.3 Python变量类型 2.4 Python运算符 2.4.1 算术运算符 2.4.2 比较运算符 2.4.3 赋值运算符 2.4.4 按位运算符 2.4.5 逻辑运算符 2.4.6 成员运算符 2.4.7 身份运算符 2.4.8 运算符优先级 2.5 Python条件与循环语句 2.5.1 条件语句 2.5.2 循环语句 2.6 Python函数 2.7 Python模块 2.8 Python文件处理 2.9 Python异常 2.10 数据分析相关库 2.10.1 NumPy 2.10.2 Matplotlib 2.10.3 PySpark 2.10.4 其他常用库 2.11 习题 第3章 数据预处理 3.1 数据分析工作流程 3.2 数据预处理 3.2.1 数据集导入 3.2.2 数据概览 3.2.3 数据清洗 3.2.4 类别变量转换 3.2.5 数据分割 3.2.6 特征缩放 …… 第4章 数据挖掘方法 第5章 网络舆情采集与热点分析 第6章 舆情研判之情感分类 第7章 用机器学习方法预测股价 第8章 用人工智能方法预测股价 第9章 个人信用评分 第10章 个人信用等级评估 第11章 企业信用评估 第12章 用户画像 第13章 目标客户运营 第14章 智能推荐 参考文献 |